FICHE DE REVISION COMPLEXES.

1 Introduction aux nombres complexes

1.1 Ensemble $\mathbb C$ des nombres complexes

Définition : i est le nombre tel que : $i^2 = -1$

<u>Définition</u>: Un nombre complexe est un nombre z tel que : z=x+iy, avec x et y deux réels.

x: partie réelle de z, notée Re(z).

y: partie imaginaire de z, notée Im(z).

 \mathbb{C} : ensemble des nombres complexes.

 $\underline{\text{D\'efinition}}$: Deux nombres complexes sont égaux ssi leurs parties réelles sont égales et leurs parties imaginaires aussi.

Conséquence : L'écriture d'un nombre complexe z=x+iy est unique.

 $\underline{\text{D\'efinition}}$. Un nombre complexe dont la partie imaginaire est nulle est un nombre réel.

Un nombre complexe dont la partie réelle est nulle est appelé un nombre imaginaire pur.

<u>Définition</u> : On appelle somme de deux nombres complexes z=x+iy et z'=x'+iy' le nombre complexe noté

$$z + z' = x + x' + i(y + y')$$

<u>Définition</u>: On appelle produit de deux nombres complexes z = x + iy et z' = x' + iy' le nombre complexe noté

$$zz' = xx' - yy' + i(xy' + yx')$$

Remarques : L'addition et la multiplication dans \mathbb{C} prolongent respectivement l'addition et la multiplication de \mathbb{R} et en possédent les propriétés.

<u>Définition</u> : On appelle opposé d'un nombre complexe z le nombre noté -z et tel que z+(-z)=0.

Propriété : Soit z=x+iy un nombre complexe non nul. Alors -z=-x-iy.

<u>Définition</u>: On appelle différence de deux nombres complexes z et z' le nombre noté z-z' tel que z-z'=z+(-z').

Propriété : Soit z = x + iy et z' = x' + iy' deux nombres complexes non nul. Alors z - z' = x - x' + i(y - y').

<u>Définition</u>: On appelle inverse d'un nombre complexe non nul z le nombre noté $\frac{1}{z}$ et tel que $z \times \frac{1}{z} = 1$.

Propriété: Soit z = x + iy un nombre complexe non nul. Alors $\frac{1}{z} = \frac{x - iy}{x^2 + y^2}$.

<u>Définition</u>: Soit z et z' deux nombres complexes, avec z' non nul. Alors le quotient de z par z' noté $\frac{z}{z'}$ est le nombre tel que $\frac{z}{z'} = z \times \frac{1}{z'}$.

Remarque : Dans \mathbb{C} , il n'y a pas de relation d'ordre qui prolonge celle de \mathbb{R} , en obéissant à la même règle des signes.

1.2 Plan complexe

<u>Définition</u>: On munit un plan \mathcal{P} d'un repère orthonormé $(O, \overrightarrow{e_1}, \overrightarrow{e_2})$. On considère un nombre complexe z = x + iy.

On peut associer au nombre z le point M(x;y). z est l'affixe de M et on note M(z). On peut aussi associer au nombre z le vecteur $\vec{v}(x;y)$. z est l'affixe de \vec{v} et l'on note $\vec{v}(z)$.

Le plan \mathcal{P} est appelé plan complexe.

<u>Vocabulaire</u> : L'axe $(O\,;\,\overrightarrow{e_1})$ est l'ensemble des points M d'affixe réelle, on l'appelle donc l'axe des réels.

L'axe $(O\,;\,\overrightarrow{e_2})$ est l'ensemble des points M d'affixe imaginaire pur, on l'appelle donc l'axe des imaginaires.

Propriété : (i) Soit $\vec{u}(z)$ et $\vec{v}(z')$, alors $\vec{u} + \vec{v}(z + z')$. (ii) Soit A(z) et B(z') alors $\overrightarrow{AB}(z'-z)$ et I milieu de [AB] a pour affixe : $\frac{z+z'}{2}$ (iii) Soit $(A_1, \alpha_1), (A_2, \alpha_2), ..., (A_n, \alpha_n)$ n points pondérés du plan, d'affixes respectives $z_{A_1}, z_{A_2}, \ldots, z_{A_n}$, tels que $\sum_{k=1}^n \alpha_k \neq 0$. Alors en notant G leur barycentre,

G a pour affixe : $z_G = \frac{\sum\limits_{k=1}^n \alpha_k z_{A_k}}{\sum\limits_{k=1}^n \alpha_k}$.

Conjugué d'un nombre complexe

Définition : On appelle nombre conjugué d'un nombre complexe z = x + iy le nombre complexe noté $\bar{z} = x - iy$

Interprétation géométrique : Soit M(z) un point du plan complexe. On note M'(z'). Alors M' est l'image de M par rapport à l'axe des réels. L'application $M(z) \mapsto M'(\bar{z'})$ est la symétrie d'axe (O, i).

Propriété : Soit z et z' deux complexes.

$$(i)\overline{\overline{z}} = z$$

(ii)
$$\overline{z+z'} = \overline{z} + \overline{z'}$$

(iii)
$$\overline{z \times z'} = \overline{z} \times \overline{z'}$$

(iv) Pour
$$z \neq 0$$
, $\left(\frac{1}{z}\right) = \frac{1}{\overline{z}}$

(v) Pour
$$z' \neq 0$$
, $\overline{\left(\frac{z}{z'}\right)} = \frac{\overline{z}}{\overline{z'}}$

(vi)
$$\overline{z^n} = (\overline{z})^n \text{ avec } n \in \mathbb{Z}$$

Propriété : Soit z un complexe.

$$\overline{Re(z)} = \frac{z + \overline{z}}{2}$$
 et $Im(z) = \frac{z - \overline{z}}{2i}$

Conséquence : Soit z un complexe.

$$\overline{z \in \mathbb{R} \text{ ssi } z = \overline{z}}$$

 $z \in i\mathbb{R}$ (z est imaginaire pur) ssi $z = -\overline{z}$

Vers la forme trigonométrique

Module d'un nombre complexe

Définition : Module d'un nombre complexe z = x + iy : $|z| = \sqrt{z\bar{z}}$

Propriétés :(i)
$$|z| = \sqrt{x^2 + y^2}$$

(ii) $|zz'| = |z||z'|$

$$\overline{\text{(ii)}} |zz'| = \overline{|z|}|z'|$$

$$(iii) \mid \frac{z}{z'} \mid = \frac{|z|}{|z'|}$$

(iv)
$$Re(z) \leq |z|$$

(v)
$$|z + z'| \leq |z| + |z'|$$

Argument d'un nombre complexe. Forme trigonométrique

Définition: Argument d'un nombre complexe z = x + iy, noté arq(z) l'angle orienté $(\overrightarrow{e_1}, \overrightarrow{OM})$, où M est le point du plan complexe d'affixe z.

Remarque: Il existe une infinité d'argument pour un nombre complexe donné. On parle d'argument principal pour l'argument ayant pour valeur comprise dans $]-\pi;\pi]$

Propriété : Soit z = x + iy un nombre complexe non nul.

 $\overline{\text{Un argument }\theta}$ défini à 2π de z est donné par :

$$\cos \theta = \frac{x}{\sqrt{x^2 + y^2}} \text{ et } \sin \theta = \frac{y}{\sqrt{x^2 + y^2}}$$

Notation : Soit z un nombre complexe non nul, de module noté ρ et dont un argument est θ , la forme trigonométrique de z est son écriture : $z = \rho(\cos\theta + i\sin\theta)$.

Propriété : Soit $z = r(\cos\theta + i\sin\theta)$ un nombre complexe avec r > 0. Alors |z| = ret $arg(z) = \theta[2\pi]$

Propriété : Soit z et z' deux nombres complexes non nuls.

 $\overline{\text{Alors}: (i)} \arg(\overline{z}) = -\arg(z)[2\pi],$

(ii)
$$\arg(-z) = \arg(z) + \pi[2\pi],$$

(iii)
$$\arg(zz') = \arg(z) + \arg(z')[2\pi],$$

(iv)
$$\arg\left(\frac{1}{z}\right) = -\arg(z)[2\pi],$$

(v)
$$\arg\left(\frac{z}{z'}\right) = \arg(z) - \arg(z')[2\pi]$$

(vi)
$$\arg(\tilde{z}^n) = n \arg(z)[2\pi]$$
 où $n \in \mathbb{Z}$

<u>Théorème</u>: Soit $A(z_A)$ et $B(z_B)$ deux points du plan complexe. Alors: $(\overrightarrow{e_1}, \overrightarrow{AB}) =$ $\arg(z_B - z_A) [2\pi].$

Théorème : Soit $A(z_A)$, $B(z_B)$, $C(z_C)$ et $D(z_D)$ quatre points du plan complexe. Alors: $(\overrightarrow{AB}, \overrightarrow{CD}) = \arg \left(\frac{z_D - z_C}{z_D - z_A}\right) [2\pi]$

Propriété: (Formule de Moivre

Pour tout entier naturel n et tout nombre réel θ , on a :

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$

2.3 Notation d'Euler

Notation : Soit z un nombre complexe non nul, de module noté ρ et d'argument θ , la notation d'Euler de z est son écriture : $z = \rho e^{i\theta}$.

Propriété : Soit $z = \rho e^{i\theta}$ et $z' = \rho' e^{i\theta'}$ deux nombres complexes non nuls.

 $\overline{\text{Alors}: (i)} \, \bar{z} = \rho e^{-i\theta}$

(ii) $zz' = \rho \rho' e^{i(\theta + \theta')}$

(iii) $\frac{z}{z'} = \frac{\rho}{\rho'} e^{i(\theta - \theta')}$

(iv) $z^n = \rho^n e^{in\theta}$ pour $n \in \mathbb{Z}$

Propriété : Soit θ une nombre réel. On a :

$$\overline{\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}} \text{ et } \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

Applications

Résolution dans $\mathbb C$ des équations du second degré à coefficients réels

Définition : Soit a, b et c trois réels, a non nul. On appelle équation du second dégré à coefficients réels toute équation du type $az^2 + bz + c = 0$, où z est l'inconnue.

Définition: Résoudre une équation du second degré à coefficients réels dans C, c'est trouver tous les nombres complexes qui rendent l'égalité vraie. Un tel nombre est appelé solution dans C de l'équation.

Résolution:

 $\Delta = b^2 - 4ac$, discriminant de $az^2 + bz + c = 0$.

D'où :
$$az^{2} + bz + c = a\left(\left(z + \frac{b}{2a}\right)^{2} - \frac{\Delta}{4a^{2}}\right)$$
.

- Si $\Delta > 0$, alors l'équation $az^2 + bz + c = 0$ admet deux solutions réelles $z_1 = \frac{-b - \sqrt{\Delta}}{2a}$

et
$$z_2 = \frac{-b + \sqrt{\Delta}}{2a}$$
.

- Si $\Delta = 0$, alors l'équation $az^2 + bz + c = 0$ admet une solution réelle double $z_0 = -\frac{b}{2c}$.

- Si $\Delta > 0$, alors l'équation $az^2 + bz + c = 0$ admet deux solutions complexes $z_1 = \frac{-b - i\sqrt{-\Delta}}{2a} \text{ et } z_2 = \frac{-b + i\sqrt{-\Delta}}{2a}.$ On remarque que : $z_2 = \overline{z_1}$.

Ainsi dans \mathbb{C} , $az^2 + bz + c$ se factorise toujours.

3.2 Ensemble de points

Propriété : L'ensemble des points M(z) tels que |z-a|=r , où $a\in\mathbb{C}$ et $r\geqslant 0$ est un cercle de centre A(a) et de rayon r.

Propriété : L'ensemble des points M(z) tels que |z-a|=|z-b| , où $a\in\mathbb{C}$ et $\overline{b \in \mathbb{C}}$ est la médiatrice de [AB]

Propriété : L'ensemble des points M(z) tels que $\arg(z-a)=\theta$, où $a\in\mathbb{C}$ et $\overline{\theta \in \mathbb{R}}$ est la demi-droite d'origine A (A non inclus) dirigée par le vecteur \overrightarrow{v} , tel que $(\overrightarrow{e_1}, \overrightarrow{v}) = \theta[2\pi]$

<u>Propriété</u>: L'ensemble des points M(z) tels que $\arg\left(\frac{z-b}{z-a}\right)=\frac{\pi}{2}$, où $a\in\mathbb{C}$ et $b \in \mathbb{C}$ et $z \neq a$ et $z \neq b$ est un demi-cercle de diamètre [AB] privé de A et B.

Interprétation géométrique de $z \mapsto z'$

3.3.1 Où z' = z + b, avec $b \in \mathbb{C}$

 $\underline{\text{Th\'eor\`eme}}$: La transformation qui à tout point M d'affixe z associe le point M' d'affixe z' tel que : z' = z + b est une translation de vecteur \overrightarrow{u} d'affixe b.

3.3.2 Où $z' - \omega = k(z - \omega)$ avec $k \in \mathbb{R}^*$, $\omega \in \mathbb{C}$

Théorème: La transformation qui à tout point M d'affixe z associe le point M' d'affixe z' tel que : $z' - \omega = k(z - \omega)$ avec $k \in \mathbb{R}^*$, $\omega \in \mathbb{C}$ est une homothétie de rapport k, de centre Ω , d'affixe ω .

3.3.3 Où $z' - \omega = e^{i\alpha}(z - \omega)$ avec $\alpha \in \mathbb{R}$, $\omega \in \mathbb{C}$

Théorème : La transformation qui à tout point M d'affixe z associe le point M'd'affixe z' tel que : $z' - \omega = e^{i\theta}(z - \omega)$ avec $\theta \in \mathbb{R}$, $\omega \in \mathbb{C}$ est une rotation de centre Ω , d'affixe ω et d'angle θ .

http://www.mathox.net 2011