Lois à densité Terminale S

X. OUVRARD

Enseignant au Lycée International de Ferney-Voltaire

- 1 Lois de probabilité continues
 - 1.1 Loi de probabilité. Densité.
 - 1.2 Variable aléatoire continue.
- Quelques lois usuelles
- 2.1 Loi uniforme sur [m; n]
- 2.2 Loi exponentielle
- Variables sans mémoire

- 1 Lois de probabilité continues
- 1.1 Loi de probabilité. Densité.
- 1.2 Variable aléatoire continue.
- Quelques lois usuelles
 - 2.1 Loi uniforme sur [m; n]
- 2.2 Loi exponentielle
- Variables sans mémoire

- 1 Lois de probabilité continues
- 1.1 Loi de probabilité. Densité.
- 1.2 Variable aléatoire continue.
- Quelques lois usuelles
 - 2.1 Loi uniforme sur [m; n]
 - 2.2 Loi exponentielle
- Variables sans mémoire

Soit I un intervalle.

On dit que f est une fonction densité sur un intervalle I si :

- 1. f est continue sur I;
- 2. f est positive sur I;
- 3. L'aire comprise entre la courbe de f et l'axe des abscisses vaut 1

:
$$\int_{t} f(t) dt = 1$$
.

Chercher α tel que $f(x)=x+\alpha$ soit une densité de probabilité sur $[0\,;\,1]$

Chercher α tel que $f(x)=x+\alpha$ soit une densité de probabilité sur $[0\,;\,1]$

Résolution :

On a :
$$\int\limits_0^1 (x+\alpha)\mathrm{d}x = \left[\frac{x^2}{2} + \alpha x\right]_0^1 = \frac{1}{2} + \alpha \text{ ; on veut } \frac{1}{2} + \alpha = 1$$
 d'où : $\alpha = \frac{1}{2}$.

Chercher α tel que $f(x)=x+\alpha$ soit une densité de probabilité sur $[0\,;\,1]$

Résolution :

$$\overline{\text{On a}:\int\limits_0^1(x+\alpha)\mathrm{d}x}=\left[\frac{x^2}{2}+\alpha x\right]_0^1=\frac{1}{2}+\alpha\text{ ; on veut }\frac{1}{2}+\alpha=1$$
 d'où : $\alpha=\frac{1}{2}.$ On a donc $f(x)=x+\frac{1}{2}.$

Chercher α tel que $f(x)=x+\alpha$ soit une densité de probabilité sur $[0\,;\,1]$

Résolution :

On a :
$$\int\limits_0^1(x+\alpha)\mathrm{d}x = \left[\frac{x^2}{2}+\alpha x\right]_0^1 = \frac{1}{2}+\alpha \text{ ; on veut } \frac{1}{2}+\alpha=1$$
 d'où : $\alpha=\frac{1}{2}.$

On a donc
$$f(x) = x + \frac{1}{2}$$
.

On vérifie que f est continue sur [0;1] et que $f(x) \ge 0$ pour $x \in [0;1]$.

Soit f une fonction densité sur I.

L'application P qui à tout sous-intervalle $[a\,;\,b]$ de I associe le nombre $\int\limits_{}^{b}f(t)\mathrm{d}t$ définit une loi de probabilité sur I.

Soit f une fonction densité sur I.

L'application P qui à tout sous-intervalle $[a\,;\,b]$ de I associe le nombre $\int\limits_{-b}^{b}f(t)\mathrm{d}t$ définit une loi de probabilité sur I.

Remarques: (i) Si
$$I = [m; M]$$
, alors $\int\limits_I f(t) dt = \int\limits_m^M f(t) dt$.

Soit f une fonction densité sur I.

L'application P qui à tout sous-intervalle $[a\,;\,b]$ de I associe le nombre $\int\limits_{-b}^{b}f(t)\mathrm{d}t$ définit une loi de probabilité sur I.

Remarques : (i) Si
$$I = [m; M]$$
, alors $\int_I f(t) dt = \int_m^M f(t) dt$.

(ii) Si
$$I=[m\,;\,+\infty[$$
, alors $\int\limits_I f(t)\mathrm{d}t=\lim_{x\to+\infty}\int\limits_m^x f(t)\mathrm{d}t.$

Soit f une fonction densité sur I.

L'application P qui à tout sous-intervalle $[a\,;\,b]$ de I associe le nombre $\int\limits_{-b}^{b}f(t)\mathrm{d}t$ définit une loi de probabilité sur I.

Remarques: (i) Si
$$I = [m; M]$$
, alors $\int_I f(t) dt = \int_m^M f(t) dt$.

(ii) Si
$$I=[m\,;\,+\infty[$$
, alors $\int\limits_I f(t)\mathrm{d}t=\lim_{x\to+\infty}\int\limits_m^x f(t)\mathrm{d}t.$

(iii) Même principe si
$$I=]-\infty$$
; $M]:\int\limits_I f(t)\mathrm{d}t=\lim_{x\to-\infty}\int\limits_x^M f(t)\mathrm{d}t.$

- 1 Lois de probabilité continues
- 1.1 Loi de probabilité. Densité.
- 1.2 Variable aléatoire continue.
- Quelques lois usuelles
 - 2.1 Loi uniforme sur [m; n]
 - 2.2 Loi exponentielle
- Variables sans mémoire

On considère une expérience aléatoire et un univers Ω , muni d'une probabilité.

Une variable aléatoire continue X définie sur Ω est telle qu'à chaque issue de Ω on peut associer un nombre réel quelconque d'un intervalle I.

On considère une expérience aléatoire et un univers Ω , muni d'une probabilité.

Une variable aléatoire continue X définie sur Ω est telle qu'à chaque issue de Ω on peut associer un nombre réel quelconque d'un intervalle I.

Exemple

Une entreprise fabrique des piles.

X la variable aléatoire associant à chaque pile sa durée de vie en heures

Cette variable aléatoire est continue.

Soit X une variable aléatoire continue à valeurs dans I. Soit P une loi de probabilité sur I, de densité f.

Alors on dit que X suit la loi de probabilité P, si pour tout intervalle J inclus dans I, on a : $P(X \in J) = \int_{T}^{T} f(t) dt$.

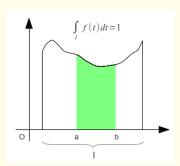
Soit X une variable aléatoire continue à valeurs dans I. Soit P une loi de probabilité sur I, de densité f.

Alors on dit que X suit la loi de probabilité P, si pour tout intervalle J inclus dans I, on a : $P(X \in J) = \int_{T}^{T} f(t) dt$.

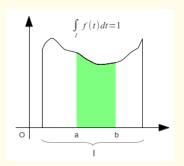
(i) Si
$$J = [a; b]$$
 tel que $a \le b$, on note $P(X \in [a; b]) = P(a \le X \le b)$

(ii) $P(a \leqslant X \leqslant b)$ correspond à l'aire comprise entre la courbe de la densité f, l'axe des abscisses et les droites d'équation x=a et x=b.

(ii) $P(a \leqslant X \leqslant b)$ correspond à l'aire comprise entre la courbe de la densité f, l'axe des abscisses et les droites d'équation x=a et x=b.



(ii) $P(a \leqslant X \leqslant b)$ correspond à l'aire comprise entre la courbe de la densité f, l'axe des abscisses et les droites d'équation x=a et x=b.



Autrement dit $P(a \leqslant X \leqslant b) = \int\limits_{-b}^{b} f(t) dt$

(iii)
$$P(X \in I) = \int\limits_I f(t) \mathrm{d}t = 1$$
 (par définition de la densité)

(iii)
$$P(X \in I) = \int\limits_{I} f(t) dt = 1$$
 (par définition de la densité)

(iv) Pour tout
$$x_0 \in I$$
, $P(X = x_0) = \int\limits_{x_0}^{x_0} f(t) dt = 0$.

(iii)
$$P(X \in I) = \int\limits_I f(t) {
m d}t = 1$$
 (par définition de la densité)

(iv) Pour tout
$$x_0 \in I$$
, $P(X=x_0) = \int\limits_{x_0}^{x_0} f(t) dt = 0$.

(v)
$$P(a \le X \le b) = P(a < X \le b) = P(a \le X < b) = P(a \le X < b)$$
;

(iii)
$$P(X \in I) = \int\limits_I f(t) {
m d}t = 1$$
 (par définition de la densité)

(iv) Pour tout
$$x_0 \in I$$
, $P(X=x_0) = \int\limits_{x_0}^{x_0} f(t) dt = 0$.

(v)
$$P(a \le X \le b) = P(a < X \le b) = P(a \le X < b) = P(a \le A \le b)$$

$$X < b$$
);

$$P(X \leqslant a) = P(X < a) ;$$

(iii)
$$P(X \in I) = \int\limits_I f(t) {
m d} t = 1$$
 (par définition de la densité)

(iv) Pour tout
$$x_0 \in I$$
, $P(X=x_0) = \int\limits_0^{x_0} f(t) dt = 0$.

(v)
$$P(a \leqslant X \leqslant b) = P(a < X \leqslant b) \stackrel{\text{def}}{=} P(a \leqslant X < b) = P(a < X \leqslant b)$$

$$X < b$$
);

$$P(X \leqslant a) = P(X < a) ;$$

$$P(X \geqslant a) = P(X > a).$$

(iii)
$$P(X \in I) = \int\limits_I f(t) dt = 1$$
 (par définition de la densité)

(iv) Pour tout
$$x_0 \in I$$
, $P(X=x_0) = \int\limits_{-\infty}^{x_0} f(t) dt = 0$.

(v)
$$P(a \leqslant X \leqslant b) = P(a < X \leqslant b) = P(a \leqslant X < b) = P(a \leqslant X \leqslant b)$$

$$X < b)$$
;

$$P(X \leqslant a) = P(X < a)$$
;

$$P(X \geqslant a) = P(X > a).$$

(vi)
$$P(X \ge a) = 1 - P(X < a)$$

Soit X une variable aléatoire continue à valeurs dans un intervalle I suivant une loi de probabilité P, de densité f On appelle fonction de répartition de X: $F(x) = P(X \leqslant x)$, pour tout $x \in I$

Soit X une variable aléatoire continue à valeurs dans un intervalle I suivant une loi de probabilité P, de densité f On appelle fonction de répartition de X: $F(x) = P(X \leqslant x)$, pour tout $x \in I$

Propriété

Soit X une variable aléatoire continue à valeurs dans un intervalle I suivant une loi de probabilité P, de densité f, de fonction de répartition F.

Soit a et b deux éléments de I tels que : a < b.

Alors
$$P(a \leqslant X \leqslant b) = F(b) - F(a)$$
.

Soit X une variable aléatoire continue à valeurs dans un intervalle I suivant une loi de probabilité P, de densité f.

On suppose que $\int\limits_{t}tf(t)dt$ existe et est un nombre fini.

L'espérance de X est le nombre noté E(X) tel que :

$$E(X) = \int\limits_{t} t f(t) dt$$

- Lois de probabilité continues
- 1.1 Loi de probabilité. Densité.
- 1.2 Variable aléatoire continue.
- Quelques lois usuelles
 - 2.1 Loi uniforme sur [m; n]
 - 2.2 Loi exponentielle
- Variables sans mémoire

- Lois de probabilité continues
- 1.1 Loi de probabilité. Densité.
- 1.2 Variable aléatoire continue.
- Quelques lois usuelles
- 2.1 Loi uniforme sur [m; n]
- 2.2 Loi exponentielle
- Variables sans mémoire

Soit m et n deux réels distincts tels que m < n. On appelle loi uniforme sur $[m\,;\,n]$ la loi ayant pour densité la fonction f telle que : $f(t) = \begin{cases} \frac{1}{n-m} & \text{si}\,m \leqslant t \leqslant n \\ 0 & \text{sinon} \end{cases}$

Soit m et n deux réels distincts tels que m < n.

On appelle loi uniforme sur $[m\,;\,n]$ la loi ayant pour densité la

fonction
$$f$$
 telle que : $f(t) = \begin{cases} \frac{1}{n-m} & \sin k \leq t \leq n \\ 0 & \sin k \end{cases}$

Propriété

Soit m et n deux réels distincts tels que m < n.

Si une variable aléatoire X suit la loi uniforme sur $[m\,;\,n]$ alors la fonction de répartition associée à cette variable aléatoire est :

$$F(x) = \begin{cases} 0 & \operatorname{si} x < m \\ \frac{x - m}{n - m} & \operatorname{si} m \leqslant x \leqslant n \\ 1 & \operatorname{si} x > n \end{cases}$$

Soit m et n deux réels distincts tels que m < n. Si une variable aléatoire X suit la loi uniforme sur $[m\,;\,n]$, elle admet une espérance et : on a : $E(X) = \int\limits_{0}^{n} tf(t) dt = \frac{m+n}{2}$.

Soit m et n deux réels distincts tels que m < n. Si une variable aléatoire X suit la loi uniforme sur $[m\,;\,n]$, elle admet une espérance et : on a : $E(X) = \int\limits_{-\infty}^{n} tf(t) dt = \frac{m+n}{2}$.

Preuve

$$E(X) = \int_{m}^{n} \frac{t}{n-m} dt = \left[\frac{t^{2}}{2(n-m)} \right]_{m}^{n} = \frac{n^{2} - m^{2}}{2(n-m)} = \frac{(n-m)(n+m)}{2(n-m)} = \frac{n+m}{2}.$$

Plan du cours

- Lois de probabilité continues
- 1.1 Loi de probabilité. Densité.
- 1.2 Variable aléatoire continue.
- Quelques lois usuelles
 - 2.1 Loi uniforme sur [m; n]
- 2.2 Loi exponentielle
- Variables sans mémoire

Définition

Soit λ un réel strictement positif. On appelle loi exponentielle de paramètre λ la loi ayant pour densité la fonction f telle que : $f(t) = \begin{cases} 0 & \text{si } t < 0 \\ \lambda e^{-\lambda t} & \text{si } t \geqslant 0 \end{cases}$

Soit λ un réel strictement positif.

Si une variable aléatoire X suit la loi exponentielle de paramètre λ alors la fonction de répartition associée à cette variable aléatoire

$$\operatorname{est}: F(x) = \begin{cases} 0 & \operatorname{si} x < 0 \\ 1 - e^{-\lambda x} & \operatorname{si} x \geqslant 0 \end{cases}$$

Soit λ un réel strictement positif.

Si une variable aléatoire X suit la loi exponentielle de paramètre λ alors la fonction de répartition associée à cette variable aléatoire

$$\operatorname{est}: F(x) = \begin{cases} 0 & \operatorname{si} x < 0 \\ 1 - e^{-\lambda x} & \operatorname{si} x \geqslant 0 \end{cases}$$

Preuve

$$F(x) = \int\limits_{-\infty}^{x} f(t) dt = \lim\limits_{A \to -\infty} \int\limits_{A}^{0} f(t) dt + \int\limits_{0}^{x} f(t) dt = 0 + \int\limits_{0}^{x} \lambda e^{-\lambda t} dt = \left[-e^{-\lambda t} \right]_{0}^{x} = 1 - e^{-\lambda x}. \square$$

Définition-Propriété

Soit λ un réel strictement positif. Si une variable aléatoire X suit la loi exponentielle de paramètre λ , on définit son espérance $E(X) = \lim_{x \to +\infty} \int\limits_0^x tf(t)dt$. On a :

$$E(X) = \frac{1}{\lambda}.$$

Preuve

$$E(X) = \lim_{x \to +\infty} \int_{0}^{x} tf(t)dt. \quad Or: \int_{0}^{x} tf(t)dt = \int_{0}^{x} t\lambda e^{-\lambda t}dt.$$

On pose
$$G(t)=-\left(t+rac{1}{\lambda}
ight)e^{-\lambda t}$$
. On a : $G'(t)=\lambda te^{-\lambda t}=tf(t)$.

$$D'$$
où : $\int\limits_0^x tf(t)dt = [G(t)]_0^x = -\left(x+rac{1}{\lambda}
ight)e^{-\lambda x} + rac{1}{\lambda}.$ Or :

$$\lim_{x \to +\infty} -\left(x + \frac{1}{\lambda}\right)e^{-\lambda x} = 0.$$

Et donc
$$E(X) = \lim_{x \to +\infty} \int_{0}^{x} tf(t)dt = \frac{1}{\lambda}$$

Plan du cours

- Lois de probabilité continues
- 1.1 Loi de probabilité. Densité.
- 1.2 Variable aléatoire continue.
- Quelques lois usuelles
 - 2.1 Loi uniforme sur [m; n]
 - 2.2 Loi exponentielle
- Variables sans mémoire

Définition

On considère une variable aléatoire correspondant à la durée de vie d'un objet ou d'un individu.

On dit que cette variable aléatoire est sans mémoire (ou sans vieillissement) si la durée de vie de l'objet ou de l'individu à l'instant t+h est indépendante de la durée de vie à l'instant t.

Autrement dit pour tout $t\geqslant 0$ et pour tout $h\geqslant 0$, on a :

$$P_{(X\geqslant t)}(X\geqslant t+h)=P(X\geqslant h)$$

Une variable aléatoire est sans mémoire ssi elle suit une loi de probabilité exponentielle.

Une variable aléatoire est sans mémoire ssi elle suit une loi de probabilité exponentielle.

Preuve

Supposons que X suit une loi exponentielle de paramètre λ .

Alors
$$P_{(X\geqslant t)}(X\geqslant t+h)=\frac{P((X\geqslant t+h)\cap (X\geqslant t))}{P(X\geqslant t)}=$$

$$\frac{P(X\geqslant t+h)}{P(X\geqslant t)}\text{, car}:\left(X\geqslant t+h\right)\cap\left(X\geqslant t\right)\text{ correspond à}$$

l'événement
$$(X \geqslant t + h)$$
 et $(X \geqslant t)$, i.e. : $(X \geqslant t + h)$.

De plus :
$$P(X \ge t + h) = 1 - P(X \le t + h) =$$

$$1 - \int_{0}^{t+h} \lambda e^{-\lambda x} dx = 1 - \left[-e^{-\lambda x} \right]_{0}^{t+h} = e^{-\lambda(t+h)}.$$

$$P(X \geqslant t) = e^{-\lambda t}$$
 et $P(X \geqslant h) = e^{-\lambda h}$.

$$P(X\geqslant t)=e^{-\lambda t} \text{ et } P(X\geqslant h)=e^{-\lambda h}.$$

$$D'où: P_{(X\geqslant t)}(X\geqslant t+h)=\frac{e^{-\lambda(t+h)}}{e^{-\lambda t}}=e^{-\lambda h}=P(X\geqslant h).$$
 Réciproque admise.

Définition-Propriété

On considère une variable aléatoire X sans mémoire. On appelle demi-vie la durée τ telle que $P(X<\tau)=0,5$.

$$\tau = \frac{\ln 2}{\lambda}.$$

Définition-Propriété

On considère une variable aléatoire X sans mémoire. On appelle demi-vie la durée τ telle que $P(X<\tau)=0,5$.

$$\tau = \frac{\ln 2}{\lambda}.$$

Exemple

Désintégration radioactive