Echantillonnage et estimation Terminale ES

X. OUVRARD

Enseignant au Lycée International de Ferney-Voltaire

Plan du cours

1 Echantillonnage

2 Estimation

Soit deux urnes U_1 et U_2 , contenant des boules rouges et noires.

On effectue n tirages avec remise.

Deux situations bien différentes :

Soit deux urnes U_1 et U_2 , contenant des boules rouges et noires. On effectue n tirages avec remise.

Deux situations bien différentes :

Dans l'urne U_1 : \bigstar Proportion p de boules rouges connue.

Dans l'urne U_1 : \bigstar Proportion p de boules rouges connue. \bigstar Observation de la fréquence d'apparition de la boule rouge, F_n .

Dans l'urne U_1 : \star Proportion p de boules rouges connue. Observation de la fréquence d'apparition de la boule rouge, F_n . $\bigstar F_n$ appartient en général à un intervalle de fluctuation de centre p, dont la précision augmente avec n.

Dans l'urne U_1 : \star Proportion p de boules rouges connue. Observation de la fréquence d'apparition de la boule rouge, F_n . $\bigstar F_n$ appartient en général à un intervalle de fluctuation de centre p, dont la précision augmente avec n. ★ Domaine de l'échantillonnage et de l'intervalle de fluctuation

Dans l'urne U_1 : \star Proportion p de boules rouges connue. Observation de la fréquence d'apparition de la boule rouge, F_n . $\bigstar F_n$ appartient en général à un intervalle de fluctuation de centre p, dont la précision augmente avec n. ★ Domaine de l'échantillonnage et de l'intervalle de fluctuation => paragraphe 1

Dans l'urne U_1 : \star Proportion p de boules rouges connue. Observation de la fréquence d'apparition de la boule rouge, F_n . $\bigstar F_n$ appartient en général à un intervalle de fluctuation de centre p, dont la précision augmente avec n. ★ Domaine de l'échantillonnage et de l'intervalle de fluctuation => paragraphe 1

Dans l'urne U_1 : \star Proportion p de boules rouges connue. Observation de la fréquence d'apparition de la boule rouge, F_n . $\bigstar F_n$ appartient en général à un intervalle de fluctuation de centre p, dont la précision augmente avec n. ★ Domaine de l'échantillonnage et de l'intervalle de fluctuation => paragraphe 1

Dans l'urne U_2 :

Proportion de boules rouges inconnue a priori.

Dans l'urne U_1 : \star Proportion p de boules rouges connue. Observation de la fréquence d'apparition de la boule rouge, F_n . $\star F_n$ appartient en général à un intervalle de fluctuation de centre p, dont la précision augmente avec n. Domaine de l'échantillonnage et de l'intervalle de fluctuation => paragraphe 1

- → Proportion de boules rouges inconnue a priori.
- → Tentative d'estimation à partir de la fréquence observée de la proportion de boules rouge.

Dans l'urne U_1 :

- ★ Proportion *p* de boules rouges connue.
- \star Observation de la fréquence d'apparition de la boule rouge, F_n .
- $\star F_n$ appartient en général à un intervalle de fluctuation de centre p, dont la précision augmente avec n.
 - ★ Domaine de l'échantillonnage et de l'intervalle de fluctuation => paragraphe 1

- → Proportion de boules rouges inconnue a priori.
- → Tentative d'estimation à partir de la fréquence observée de la proportion de boules rouge.
- ★ Estimation faite à partir d'un intervalle de confiance.

Dans l'urne U_1 :

- \star Proportion p de boules rouges connue.
- \star Observation de la fréquence d'apparition de la boule rouge, F_n .
- $\star F_n$ appartient en général à un intervalle de fluctuation de centre p, dont la précision augmente avec n.
 - ★ Domaine de l'échantillonnage et de l'intervalle de fluctuation => paragraphe 1

- → Proportion de boules rouges inconnue a priori.
- → Tentative d'estimation à partir de la fréquence observée de la proportion de boules rouge.
- ★ Estimation faite à partir d'un intervalle de confiance.
- → Domaine de l'estimation et de l'intervalle de confiance

Dans l'urne U_1 : \star Proportion p de boules rouges connue. Observation de la fréquence d'apparition de la boule rouge, F_n . $\bigstar F_n$ appartient en général à un intervalle de fluctuation de centre p, dont la précision augmente avec n. Domaine de l'échantillonnage et de l'intervalle de fluctuation => paragraphe 1

- → Proportion de boules rouges inconnue a priori.
- → Tentative d'estimation à partir de la fréquence observée de la proportion de boules rouge.
- ★ Estimation faite à partir d'un intervalle de confiance.
- Domaine de l'estimation et de l'intervalle de confiance ⇒paragraphe 2

Plan du cours

Echantillonnage

2 Estimation

Soit X_n une variable aléatoire suivant une loi binomiale $\mathcal{B}(n,p)$.

On a vu que pour $Z_n=\frac{X_n-\mu}{\sigma}$ suivant la loi normale centrée réduite : $P(-1,96\leqslant Z_n\leqslant 1,96)\approx 0,95.$

On a vu que pour $Z_n=\frac{X_n-\mu}{\sigma}$ suivant la loi normale centrée réduite : $P(-1,96\leqslant Z_n\leqslant 1,96)\approx 0,95.$ Ce qui revient à $P(-1,96\leqslant \frac{X_n-\mu}{\sigma}\leqslant 1,96)\approx 0,95,$

On a vu que pour $Z_n=\frac{X_n-\mu}{\sigma}$ suivant la loi normale centrée réduite : $P(-1,96\leqslant Z_n\leqslant 1,96)\approx 0,95.$ Ce qui revient à $P(-1,96\leqslant \frac{X_n-\mu}{\sigma}\leqslant 1,96)\approx 0,95,$ ou encore à : $P(\mu-1,96\sigma\leqslant X_n^{\sigma}\leqslant \mu+1,96\sigma)\approx 0,95$

On pose $F_n=\frac{X_n}{n}$ la variable aléatoire correspondant à la fréquence de succès.

On pose $F_n = \frac{X_n}{n}$ la variable aléatoire correspondant à la fréquence de succès.

Alors
$$P\left(\frac{\mu-1,96\sigma}{n}\leqslant F_n\leqslant \frac{\mu+1,96\sigma}{n}\right)\approx 0,95.$$

On pose $F_n = \frac{X_n}{n}$ la variable aléatoire correspondant à la fréquence de succès.

Alors
$$P\left(\frac{\mu-1,96\sigma}{n} \leqslant F_n \leqslant \frac{\mu+1,96\sigma}{n}\right) \approx 0,95.$$

Or $\frac{\mu}{n} = n$ et $\frac{\sigma}{n} = \sqrt{\frac{p(1-p)}{n}}$

Or
$$\frac{\mu}{n}=p$$
 et $\frac{\sigma}{n}=\sqrt{\frac{p(1-p)}{n}}$

On pose $F_n=\frac{X_n}{n}$ la variable aléatoire correspondant à la fréquence de succès.

Alors
$$P\left(\frac{\mu-1,96\sigma}{n}\leqslant F_n\leqslant \frac{\mu+1,96\sigma}{n}\right)\approx 0,95.$$
 Or $\frac{\mu}{n}=p$ et $\frac{\sigma}{n}=\sqrt{\frac{p(1-p)}{n}}$ On note $I_n=\left[p-1,96\sqrt{\frac{p(1-p)}{n}}\,;\,p+1,96\sqrt{\frac{p(1-p)}{n}}\,\right].$

On pose $F_n = \frac{X_n}{n}$ la variable aléatoire correspondant à la fréquence de succès.

Alors
$$P\left(\frac{\mu-1,96\sigma}{n}\leqslant F_n\leqslant \frac{\mu+1,96\sigma}{n}\right)\approx 0,95.$$
 Or $\frac{\mu}{n}=p$ et $\frac{\sigma}{n}=\sqrt{\frac{p(1-p)}{n}}$ On note $I_n=\left[p-1,96\sqrt{\frac{p(1-p)}{n}}\,;\,p+1,96\sqrt{\frac{p(1-p)}{n}}\,\right].$

Alors, pour n grand $P(F_n \in I_n)$ est voisine de 0,95.

On pose $F_n = \frac{X_n}{n}$ la variable aléatoire correspondant à la fréquence de succès.

Alors
$$P\left(\frac{\mu-1,96\sigma}{n}\leqslant F_n\leqslant \frac{\mu+1,96\sigma}{n}\right)\approx 0,95.$$
 Or $\frac{\mu}{n}=p$ et $\frac{\sigma}{n}=\sqrt{\frac{p(1-p)}{n}}$ On note $I_n=\left[p-1,96\sqrt{\frac{p(1-p)}{n}}\,;\,p+1,96\sqrt{\frac{p(1-p)}{n}}\,\right].$

Alors, pour n grand $P(F_n \in I_n)$ est voisine de 0,95.

Définition

$$I_n = \left[p-1,96\sqrt{\frac{p(1-p)}{n}}\,;\, p+1,96\sqrt{\frac{p(1-p)}{n}}\right] \text{ est appelé un intervalle de fluctuation asymptotique de } F_n \text{ avec la probabilité 0,95 (ou au seuil de 95%)}$$

Cette approximation est valable dès que $n \geqslant 30$, $np \geqslant 5$ et $n(1-p) \geqslant 5$.

Soit F_n la fréquence dans un échantillon de taille n. Si I_n est l'intervalle de fluctuation asymptotique au seuil de 95 % alors la règle de décision est la suivante : - si $F_n \in I_n$: on accepte l'hypothèse au seuil de risque de 5%. - si $F_n \notin I_n$: on rejette l'hypothèse selon laquelle la proportion vaut n au seuil de risque de 5 %.

Cette approximation est valable dès que $n \ge 30$, $np \ge 5$ et $n(1-p) \ge 5$.

Prise de décision à partir d'un échantillon :

On considère une population dans laquelle on émet l'hypothèse qu'un caractère a la proportion p.

Cette approximation est valable dès que $n \geqslant 30$, $np \geqslant 5$ et $n(1-p) \geqslant 5$.

Prise de décision à partir d'un échantillon :

On considère une population dans laquelle on émet l'hypothèse qu'un caractère a la proportion p.

Soit F_n la fréquence dans un échantillon de taille n.

Cette approximation est valable dès que $n \geqslant 30$, $np \geqslant 5$ et $n(1-p) \geqslant 5$.

Prise de décision à partir d'un échantillon :

On considère une population dans laquelle on émet l'hypothèse qu'un caractère a la proportion p.

Soit F_n la fréquence dans un échantillon de taille n.

Si I_n est l'intervalle de fluctuation asymptotique au seuil de 95 %, alors la règle de décision est la suivante :

Cette approximation est valable dès que $n \geqslant 30$, $np \geqslant 5$ et $n(1-p) \geqslant 5$.

Prise de décision à partir d'un échantillon :

On considère une population dans laquelle on émet l'hypothèse qu'un caractère a la proportion p.

Soit F_n la fréquence dans un échantillon de taille n.

Si I_n est l'intervalle de fluctuation asymptotique au seuil de 95 %, alors la règle de décision est la suivante :

- si $F_n \in I_n$: on accepte l'hypothèse au seuil de risque de 5%.

Cette approximation est valable dès que $n \geqslant 30$, $np \geqslant 5$ et $n(1-p) \geqslant 5$.

Prise de décision à partir d'un échantillon :

On considère une population dans laquelle on émet l'hypothèse qu'un caractère a la proportion p.

Soit F_n la fréquence dans un échantillon de taille n.

Si I_n est l'intervalle de fluctuation asymptotique au seuil de 95 %, alors la règle de décision est la suivante :

- si $F_n \in I_n$: on accepte l'hypothèse au seuil de risque de 5%.
- si $F_n \notin I_n$: on rejette l'hypothèse selon laquelle la proportion vaut p au seuil de risque de 5 %.

Plan du cours

Echantillonnage

2 Estimation

On considère une expérience de Bernoulli dont on ne connaît pas la probabilité de succés p (ni celle de l'échec !)

On considère une expérience de Bernoulli dont on ne connaît pas la probabilité de succés p (ni celle de l'échec !) On désire estimer au mieux la probabilité p à partir de n expériences indépendantes.

On désire estimer au mieux la probabilité p à partir de n expériences indépendantes.

Soit X_n la variable aléatoire comptant le nombre de succès au bout des n expériences.

On désire estimer au mieux la probabilité p à partir de n expériences indépendantes.

Soit X_n la variable aléatoire comptant le nombre de succès au bout des n expériences.

Soit F_n la variable aléatoire donnant la fréquence de succès.

$$F_n = \frac{X_n}{n}.$$

On désire estimer au mieux la probabilité p à partir de n expériences indépendantes.

Soit X_n la variable aléatoire comptant le nombre de succès au bout des n expériences.

Soit F_n la variable aléatoire donnant la fréquence de succès.

$$F_n = \frac{X_n}{n}$$
.

 F_n peut-être considéré comme un estimateur de p.

On désire estimer au mieux la probabilité p à partir de n expériences indépendantes.

Soit X_n la variable aléatoire comptant le nombre de succès au bout des n expériences.

Soit F_n la variable aléatoire donnant la fréquence de succès.

$$F_n = \frac{X_n}{n}$$
.

 F_n peut-être considéré comme un estimateur de p.

Jusqu'à quel point est-ce fiable ? Quelle est la marge d'erreur ?

Définition

On appelle intervalle de confiance au niveau 0,95 pour l'estimation de p l'intervalle noté I_C tel que : $P\left(p \in I_C\right) \geqslant 0,95$

Définition

On appelle intervalle de confiance au niveau 0,95 pour l'estimation de p l'intervalle noté I_C tel que : $P\left(p \in I_C\right) \geqslant 0,95$

Propriété

Soit X_n une variable aléatoire suivant la loi binomiale $\mathcal{B}(n,p)$, alors pour tout $p \in]0$; 1[il existe un entier n_0 tel que pour tout $n \geqslant n_0$,

$$P\left(p - \frac{1}{\sqrt{n}} \leqslant F_n \leqslant p + \frac{1}{\sqrt{n}}\right) > 0,95.$$

Preuve

Montrons que

$$K_n = \left[p - 1,96\sqrt{\frac{p(1-p)}{n}} ; p+1,96\sqrt{\frac{p(1-p)}{n}} \right] \subset \left[p - \frac{1}{\sqrt{n}} ; p + \frac{1}{\sqrt{n}} \right] = J_n.$$

Preuve

Montrons que

$$K_n = \left[p - 1,96\sqrt{\frac{p(1-p)}{n}} \, ; \, p+1,96\sqrt{\frac{p(1-p)}{n}} \right] \subset \left[p - \frac{1}{\sqrt{n}} \, ; \, p + \frac{1}{\sqrt{n}} \right] = J_n.$$

Cela revient à montrer que $1,96\sqrt{p(1-p)} \leqslant 1$ pour $p \in [0\,;\,1]$.

Soit $g: p \mapsto p(1-p)$ g est dérivable sur [0; 1] et g'(p) = 1 - 2p.

$$g'(p)\geqslant 0 \Leftrightarrow rac{1}{2}\geqslant p.$$
 Et donc g est croissante sur $\left[0\,;\,rac{1}{2}
ight]$ et

décroissante sur $\left[\frac{1}{2}\,;\,1\right]$. Donc sur $[0\,;\,1]$, g atteint son maximum

en
$$\frac{1}{2}$$
. $g\left(\frac{1}{2}\right) = \frac{1}{4}$. Et ainsi $1,96\sqrt{p(1-p)} \leqslant 1,96\sqrt{\frac{1}{4}} = 0,98$.

Preuve

Montrons que

$$K_n = \left[p - 1,96\sqrt{\frac{p(1-p)}{n}} ; p + 1,96\sqrt{\frac{p(1-p)}{n}} \right] \subset \left[p - \frac{1}{\sqrt{n}} ; p + \frac{1}{\sqrt{n}} \right] = J_n.$$

Cela revient à montrer que $1,96\sqrt{p(1-p)}\leqslant 1$ pour $p\in[0\,;\,1].$

Soit $g: p \mapsto p(1-p)$ g est dérivable sur [0; 1] et g'(p) = 1 - 2p.

$$g'(p)\geqslant 0 \Leftrightarrow rac{1}{2}\geqslant p.$$
 Et donc g est croissante sur $\left[0\,;\,rac{1}{2}
ight]$ et

décroissante sur $\left\lfloor \frac{1}{2} \, ; \, 1 \right\rfloor$. Donc sur $[0\, ; \, 1]$, g atteint son maximum

en
$$\frac{1}{2}$$
. $g\left(\frac{1}{2}\right) = \frac{1}{4}$. Et ainsi $1,96\sqrt{p(1-p)} \leqslant 1,96\sqrt{\frac{1}{4}} = 0,98$.

Ainsi, $P(F_n \in K_n) \leqslant P(F_n \in J_n)$ et donc : $0,95 \leqslant P(F_n \in J_n)$

Lorsque n est assez grand (c.à.d. pour $n\geqslant 30$, $np\geqslant 5$ et $n(1-p)\geqslant 5$), l'intervalle $I_C=\left[F_n-\frac{1}{\sqrt{n}}\,;\,F_n+\frac{1}{\sqrt{n}}\right]$ est un intervalle de confiance au niveau 95% pour l'estimation de p. I_C est appelé intervalle de confiance pour p au niveau asymptotique 95%.

$$\begin{split} ⩔ \ p - \frac{1}{\sqrt{n}} \leqslant F_n \leqslant p + \frac{1}{\sqrt{n}} \Leftrightarrow -\frac{1}{\sqrt{n}} \leqslant F_n - p \leqslant \frac{1}{\sqrt{n}} \Leftrightarrow -\frac{1}{\sqrt{n}} \leqslant \\ &p - F_n \leqslant \frac{1}{\sqrt{n}} \Leftrightarrow -\frac{1}{\sqrt{n}} + F_n \leqslant p \leqslant \frac{1}{\sqrt{n}} + F_n \Leftrightarrow p \in I_C. \\ &P\left(p - \frac{1}{\sqrt{n}} \leqslant F_n \leqslant p + \frac{1}{\sqrt{n}}\right) = P(p \in I_C) > 0,95. \ \ \Box \end{split}$$

Lorsque n est assez grand (c.à.d. pour $n\geqslant 30$, $np\geqslant 5$ et $n(1-p)\geqslant 5$), l'intervalle $I_C=\left[F_n-\frac{1}{\sqrt{n}}\,;\,F_n+\frac{1}{\sqrt{n}}\right]$ est un intervalle de confiance au niveau 95% pour l'estimation de p. I_C est appelé intervalle de confiance pour p au niveau asymptotique 95%.

Preuve

D'après la propriété précédente, il existe n_0 tel que pour $n\geqslant n_0$: $P\left(p-\frac{1}{\sqrt{n}}\leqslant F_n\leqslant p+\frac{1}{\sqrt{n}}\right)>0,95.$

Lorsque n est assez grand (c.à.d. pour $n\geqslant 30$, $np\geqslant 5$ et $n(1-p)\geqslant 5$), l'intervalle $I_C=\left[F_n-\frac{1}{\sqrt{n}}\,;\,F_n+\frac{1}{\sqrt{n}}\right]$ est un intervalle de confiance au niveau 95% pour l'estimation de p. I_C est appelé intervalle de confiance pour p au niveau asymptotique 95%.

Preuve

$$\begin{split} & \text{D'après la propriété précédente, il existe } n_0 \text{ tel que pour } n \geqslant n_0 \text{ :} \\ & P\left(p - \frac{1}{\sqrt{n}} \leqslant F_n \leqslant p + \frac{1}{\sqrt{n}}\right) > 0,95. \\ & \text{Or } p - \frac{1}{\sqrt{n}} \leqslant F_n \leqslant p + \frac{1}{\sqrt{n}} \Leftrightarrow -\frac{1}{\sqrt{n}} \leqslant F_n - p \leqslant \frac{1}{\sqrt{n}} \Leftrightarrow -\frac{1}{\sqrt{n}} \leqslant p - F_n \leqslant \frac{1}{\sqrt{n}} \Leftrightarrow -\frac{1}{\sqrt{n}} + F_n \leqslant p \leqslant \frac{1}{\sqrt{n}} + F_n \Leftrightarrow p \in I_C. \end{split}$$

Lorsque n est assez grand (c.à.d. pour $n\geqslant 30$, $np\geqslant 5$ et $n(1-p)\geqslant 5$), l'intervalle $I_C=\left[F_n-\frac{1}{\sqrt{n}}\,;\,F_n+\frac{1}{\sqrt{n}}\right]$ est un intervalle de confiance au niveau 95% pour l'estimation de p. I_C est appelé intervalle de confiance pour p au niveau asymptotique 95%.

Preuve

 $\begin{array}{l} \textit{D'après la propriété précédente, il existe } n_0 \; \textit{tel que pour } n \geqslant n_0 \; : \\ P\left(p-\frac{1}{\sqrt{n}} \leqslant F_n \leqslant p+\frac{1}{\sqrt{n}}\right) > 0,95. \\ \textit{Or } p-\frac{1}{\sqrt{n}} \leqslant F_n \leqslant p+\frac{1}{\sqrt{n}} \Leftrightarrow -\frac{1}{\sqrt{n}} \leqslant F_n - p \leqslant \frac{1}{\sqrt{n}} \Leftrightarrow -\frac{1}{\sqrt{n}} \leqslant p-F_n \leqslant \frac{1}{\sqrt{n}} \Leftrightarrow -\frac{1}{\sqrt{n}} + F_n \leqslant p \leqslant \frac{1}{\sqrt{n}} + F_n \Leftrightarrow p \in I_C. \\ P\left(p-\frac{1}{\sqrt{n}} \leqslant F_n \leqslant p+\frac{1}{\sqrt{n}}\right) = P(p \in I_C) > 0,95. \; \Box \end{array}$

