FONCTIONS EXPONENTIELLES

Etude des fonctions exponentielles 1

<u>Définition</u>: Soit q>0. On appelle fonction exponentielle de base q, notée \exp_q , la fonction définie sur $\mathbb R$ par : $\exp_q: x \mapsto q^x.$

Remarque : Si q = 1, $\exp_1(x) = 1$ pour tout $x \in \mathbb{R}$.

Propriété : La fonction exponentielle de base q transforme les sommes en produit. Autrement dit pour tous réels $\overline{x \text{ et } y, \text{ on }} a: q^{x+y} = q^x q^y$

Conséquences : Soit q un réel strictement positif. Soit deux réels x et y. Soit n un entier relatif. On a :

• (i)
$$q^0 = 1$$

$$\circ$$
 (ii) $q^{-y} = \frac{1}{q^y}$

$$\circ \text{ (ii) } q^{-y} = \frac{1}{q^y} \qquad \qquad \circ \text{ (iii) } q^{x-y} = \frac{q^x}{q^y} \qquad \qquad \circ \text{ (iv) } q^{nx} = \left(q^x\right)^n$$

$$\circ \text{ (iv) } q^{nx} = (q^x)^r$$

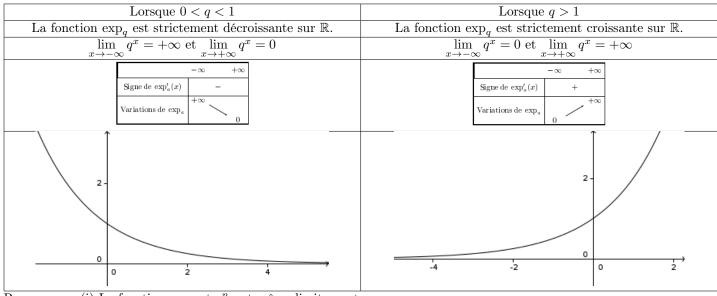
 $\frac{\overline{\text{Preuve}:}}{\text{(i) }q^{0+0}} = q^0 = q^0 \times q^0, \text{ d'où }q^0(1-q^0) = 0, \text{ donc }q^0 = 0 \text{ ou }q^0 = 1. \text{ Or }q^0 \neq 0 \text{ sinon pour tout } x, \text{ on aurait }q^x = 0, \text{ centered}$ qui n'est pas possible. Donc $q^0 = 1$.

(ii)
$$q^0 = q^{y-y} = q^y q^{-y}$$
, donc $q^{-y} = \frac{1}{q^y}$.

(iii)
$$q^{x-y} = q^{x+(-y)} = q^x q^{-y} = \frac{q^x}{q^{-y}}$$
.

(iv) Admise

Propriété (admise) : La fonction \exp_q est dérivable sur $\mathbb R.$



Remarques : (i) La fonction \exp_q et q^n ont même limite en $+\infty$.

- $\overline{\text{(ii) La fonction }} \exp_q \text{ et } q^n \text{ ont même sens de variation.}$
- (iii) Toutes les fonctions exponentielles de base q passe par le point de coordonnées (0; 1) et par le point de coordonnées (1; q).

Propriété (admise) :La fonction \exp_q est convexe sur \mathbb{R} .

2 Un cas particulier fondamental

2.1 Définitions. Propriétés

Théorème (admis)-Définition : Il existe une unique valeur du réel q telle que la tangente en 0 de la courbe de la $\overline{\text{fonction exp}_q \text{ ait pour coefficient directeur 1.}}$

Autrement dit il existe une unique valeur de q tel que le nombre dérivé en 0 de \exp_q soit 1.

Cette fonction est appelée fonction exponentielle de base e, elle est notée $\exp: x \mapsto \exp(x)$

Conséquences : Soit $x \in \mathbb{R}$, $y \in \mathbb{R}$ et $n \in \mathbb{Z}$, on a :

exp(1) = e; ce nombre s'appelle le nombre d'Euler. On retiendra que c'est un nombre irrationnel et que l'on a $e \approx 2,718$.

$$\begin{vmatrix}
\circ \exp(x) = e^x \\
\circ e^x > 0
\end{vmatrix}$$

$$\begin{vmatrix}
\circ e^{x+y} = e^x e^y \\
\circ e^{-x} = \frac{1}{e^x}
\end{vmatrix}$$

$$\begin{vmatrix}
\circ e^{x-y} = \frac{e^x}{e^y} \\
\circ e^{nx} = (e^x)
\end{vmatrix}$$

2.2 Etude de la fonction exponentielle

<u>Théorème</u>: La fonction exponentielle est définie, continue et dérivable sur \mathbb{R} . Pour tout réel $x \in \mathbb{R}$, $\exp' x = e^x$.

 $\underline{\text{Preuve}:} \ \frac{\mathrm{e}^{x+h} - \mathrm{e}^x}{h} = \frac{\mathrm{e}^x \left(\mathrm{e}^h - 1\right)}{h} = \mathrm{e}^x \frac{\mathrm{e}^h - 1}{h}. \text{ Or par d\'efinition, } \lim_{h \to 0} \frac{\mathrm{e}^h - 1}{h} = 1. \text{ Donc : } \lim_{h \to 0} \frac{\mathrm{e}^{x+h} - \mathrm{e}^x}{h} = \mathrm{e}^x \text{ et donc la fonction exponentielle est d\'efinie et d\'erivable sur } \mathbb{R} \text{ et exp'} \ x = \mathrm{e}^x. \text{ Par cons\'equent, elle est continue sur } \mathbb{R}.$

Théorème : La fonction exponentielle est strictement croissante sur $\mathbb R$

<u>Preuve</u>: On a pour tout $x \in \mathbb{R}$: $\exp' x = e^x$ et $e^x > 0$, donc la fonction exponentielle est strictement croissante sur \mathbb{R} .

Corollaire : Soit a et b deux réels.

- (i) a < b équivaut à $e^a < e^b$
- (ii) a = b équivaut à $e^a = e^b$

Preuve : (i) C'est une traduction de la stricte croissance

(ii) Si a = b, alors $e^a = e^b$, par traduction de la stricte croissance.

En partant de $e^a = e^b$,

- si on suppose que a < b, alors $e^a < e^b$ d'après la stricte croissance, contradiction
- si on suppose que a > b, alors $e^a > e^b$ d'après la stricte croissance, contradiction donc a = b.

Conséquence $:e^x < 1$ équivaut à x < 0.

Propriété:
$$\lim_{x \to +\infty} e^x = +\infty$$
 et $\lim_{x \to -\infty} e^x = 0$

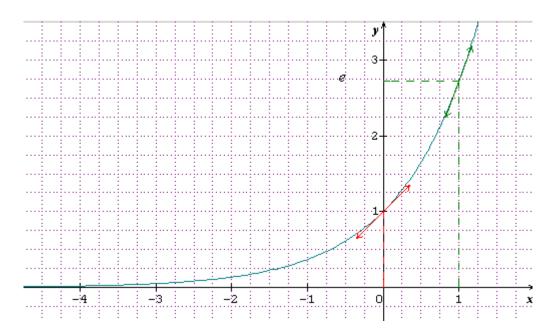
<u>Preuve</u>: On pose $g(x) = e^x - x$. g est définie et dérivable sur $\mathbb R$ et $g'(x) = e^x - 1$ et donc $g'(x) \geqslant 0$ ssi $e^x \geqslant 1$ ssi $x \geqslant 0$. Donc pour $x \geqslant 0$, g est croissante et donc $g(x) \geqslant g(0)$ pour $x \geqslant 0$, ou encore $g(x) \geqslant 1 > 0$. Donc pour $x \geqslant 0$, on a $e^x > x$. Or $\lim_{x \to +\infty} x = +\infty$, d'où $\lim_{x \to +\infty} e^x = +\infty$.

On pose X = -x. On a $e^x = e^{-X} = \frac{1}{e^X}$. Or $\lim_{x \to -\infty} X = +\infty$, d'où : $\lim_{x \to -\infty} e^X = +\infty$ et par suite $\lim_{x \to -\infty} \frac{1}{e^X} = 0$. D'où : $\lim_{x \to -\infty} e^x = 0$.

Tableau de variation:

	$-\infty$		0		+∞
Signe de $\exp'(x)$		+	1	+	
Variations de exp	0	/	1	/	+∞

Courbe représentative de $x \mapsto e^x$:



Propriété : La fonction exp est convexe sur \mathbb{R} .

<u>Preuve</u>: exp" $(x) = e^x > 0$, donc la fonction exp est convexe sur \mathbb{R} .

Propriété (admise) : Soit \boldsymbol{u} une fonction dérivable sur un intervalle \boldsymbol{I} .

Alors la fonction $f: x \mapsto \exp(u(x))$ est dérivable sur I et $f'(x) = u'(x)e^{u(x)}$.

Propriété : Soit u une fonction dérivable sur un intervalle I . Alors la fonction $f: x \mapsto \exp(u(x))$ a le même sens de variation que u.

<u>Preuve</u>: $e^{u(x)} > 0$, donc f'(x) a le même signe que u'(x).*

X.O.B. 2010